Homework \#4 (100 points) - Show all work on the following problems: (Grading rubric: Solid attempt $=50 \%$ credit, Correct approach but errors $=75 \%$ credit, Correct original solution $=100 \%$ credit, Copy of online solutions $=0 \%$ credit $)$

Problem 1 (30 points):

1a (20 points): Starting with the expression $\frac{d W}{d t}=\int\left(\overrightarrow{J_{f}} \cdot \vec{E}\right) d \tau$ for the work done on free charges and currents by the electromagnetic fields, derive a new version of Poynting's theorem in matter, following the treatment in section 8.1.2, with appropriate modifications. Show that the Poynting vector becomes $\vec{S}=\vec{E} \times \vec{H}$, and that the rate of change of the energy density in the fields is $\frac{\partial u}{\partial t}=\vec{E} \cdot \frac{\partial \vec{D}}{\partial t}+\vec{H} \cdot \frac{\partial \vec{B}}{\partial t}$.

1b (10 points): For linear media (so that E and D are proportional to each other, and B and H are proportional to each other), show that $u=\frac{1}{2}[\vec{E} \cdot \vec{D}+\vec{B} \cdot \vec{H}]$.

Problem 2 (20 points): Show that a standing wave $f(z, t)=A \sin (k z) \cos (k v t)$ is a solution of the wave equation, and that it can be written as a sum of a wave traveling to the left and a wave traveling to the right.

Problem 3 (50 points):

3a (20 points): Derive the real electric and magnetic fields, in Cartesian components, for a monochromatic plane wave of amplitude E_{0}, frequency ω, and $\delta=0$, traveling in the $-x$ direction and polarized in the z direction. Explicitly write down the Cartesian coordinates for the wave vector \vec{k} and the polarization vector \hat{n}. Finally, sketch the wave fields, in a format similar to Fig. 9.10 in the textbook.

3b (30 points): Do the same thing for a wave with the same parameters, but traveling in the direction from the origin to the point (1,1,1), with its polarization parallel to the $\mathrm{x}-\mathrm{z}$ plane.

